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RAINFALL IN LITTLE HAVANA

Diego R. Roqué

The work presented here is divided into two major
parts. The first part gives an abreviated and informal
discussion of the theoretical framework underpin-
ning the methodology that is to be applied in the sec-
ond part. It is based on material put together in Ro-
qué (1996) which in turn was based on material
incidentally derived in Roqué (1982). The topic is
time-varying Markov chains for which there is not an
extensive amount of literature. The reader is refered
to the classical and very important work of Hajnal
(1956, 1958). There is also a very good treatment of
the subject matter in Howard (1971). The topic on
non time-varying Markov chains, on the other hand,
has generated an overwhelming amount of literature
and it is treated by almost every major contemporary
author. Among these, some of the best are Ross
(1983, 1985), Çinlar (1975), and Karlin and Taylor
(1975).

All Markov chains, time-varying or not, have in com-
mon that they satisfy the Markov property. A Sto-
chastic Process is a collection of random variables in-
dexed by time and a discrete time Stochastic Process

defined on a discrete state space
E is a Markov chain if :

for all i and j in E and all times .

This property simply states that whatever state the
process will move into depends only on where the
process currently is and not on any prior history. If
the state space E is finite, the Markov chain is also
called finite. Our attention in this paper is restricted

to finite Markov chains. If the cardinality of the set E
is the integer v, and if the transition probabilities (as
in equation (1)) do not vary with time, then the fi-
nite Markov chain has a well defined stochastic
square matrix of dimension (v x v) which is usually
labeled P and is called the matrix of transition proba-
bilities. This matrix contains an orderly arrangement
of the transition probabilities and the entries in each
row must add up to one.

The second part uses the theory described in the first
part to update the very successful work of Gabriel
and Newmann (1957, 1962) in predicting rain prob-
abilities and analyzing weather cycles in Israel. Their
work was amply documented in Cox and Miller
(1968) under the title “Rainfall in Tel Aviv.” They
used the state space E = {0, 1}, where the two states
represented “wet day” or “dry day.” The 2 x 2 transi-
tion matrix was estimated using 27 years of accumu-
lated data on daily rainfall for the months of the
rainy season. Their Markov chain was not time vary-
ing. It was used to predict the probability of wet and
dry days and to analyze weather cycles during the
months of the rainy season. They obtained probabili-
ty distributions for the duration of both dry and wet
spells. Here one will emulate their effort using in-
stead a time-varying Markov chain that will permit
estimating year round probabilities for both the Wet
and the Dry seasons for both the short and the long
terms.

ERGODICITY

Given the Stochastic Process 
(here a finite Markov chain), then its ergodic proper-
ties are those that relate information derived from
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one realization of the process (usually a time average)
to information derived from the entire ensemble of
realizations (usually in the form of an expected val-
ue). One may borrow and adapt the discussion in
Gross and Harris (1974) to illustrate the concept of
ergodicity. If one assumes the following limits exist
for all k integer, :

(a)

(b)

(c)

Then the process is ergodic with respect to all its mo-
ments (i.e., ergodic in distribution function) if a(k) =
b (k) = c(k) for all k integer, .

These processes, when ergodic, become independent
of time and possess a stationary or steady state proba-
bility distribution. It can be shown they also become
independent of any initial distribution. In short, any
one realization of the process yields all relevant infor-
mation about the process behavior in the long run.
The time varying process discussed here, however,
will only exhibit weak ergodicity in distribution, that
is, it is only  the case that a(k) = c(k) for all k integer,

.

The reason the limit b(k) does not figure in the defi-
nition of weak ergodicity in the distribution function
is because the time varying process will not always
possess a steady state distribution. Instead, there will
exist a unique finite length stationary cycle of proba-
bility distributions (vectors) that becomes indepen-
dent of time and independent of any initial distribu-
tion. Any one realization will still yield all relevant
information about the long-run behavior of the pro-
cess. The process becomes independent of any initial
distribution and except for the repetitive nature of
the cycle, completely independent of time as well.

Let  be such a stationary cy-
cle of probability distributions (vectors), then the fol-
lowing proposition becomes relevant:

Proposition: For the repeating stationary cycle, there
exists a Cesaro sum convergence (coordinate wise)
vector, , which itself forms a probability distribu-
tion.

The proof of this proposition is very simple and is
omitted here.

THE PROCESS
The time varying Markov chain considered here is
defined in the state space E = {0, 1}. According to
Cox & Miller (1968), this is the smallest non-trivial
state space. Any pair of ergodic (i.e., regular) non
time varying Markov chains defined on this state
space will suffice to construct the time varying pro-
cess. The two Markov chains will be represented by
the two 2 x 2 transition matrices P(1) and P(2). Ma-
trix P(1) will have eigenvalues 1 and α, and steady
state distribution (vector) (1). The second matrix
P(2) will have eigenvalues 1 and β, and steady state
distribution (vector) (2). Regularity requires both

and . One may then define a cyclic
process with each repeating cycle of constant length
(n + m) time epochs. In every cycle, as it repeats it-
self, transitions are governed by the chain P(1) dur-
ing the first n epochs, inmediately followed by m
time epochs where transitions are governed by the
chain P(2). Hence transitions are varying in time as a
consequence of alternating the two transition proba-
bility matrices.

Fortunately, for 2 x 2 stochastic matrices, the proper-
ty of regularity is closed under matrix multiplication.
One has a process here that easily overcomes the ob-
jections outlined in Hajnal (1958). The time varying
process will also continue to satisfy the Markov prop-
erty and the Markov chain process may be denoted

.

Showing weak ergodicity in distribution function for
this process in the binary state space gets even easier
if one makes the following observations: First, all
moments for this process are identical, second, all
sums of the indexed Y random variables count the
number of transitions into state 1 and hence Cesaro
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sums represent proportion of time (or of transitions)
in (or into) state 1, and finally, all expected values of
the indexed Y random variables simply recover the
probability of being in state 1.

The key to showing weak ergodicity in distribution
requires borrowing and adapting some concepts from
the theory of Simulation (see Law & Kelton (1982)).
One must assume the time index has gotten very
large and stationarity has set in. At some point after
stationarity has set in, one begins looking at the sam-
ple paths of the chain. Alternatively, one may con-
ceive of a process that simply starts at cyclic stationar-
ity. From the theory of Simulation then, the end of
each cycle is a Regeneration Point (actually all epochs
in the cycle may be viewed as Regeneration Points).
This simply means the process probabilistically re-
starts itself at the end of each cycle for the one real-
ization being observed.

A simple thought experiment should convince the
reader of this. Assume one has a countable infinity of
probabilists. Each probabilist arrives at the process
sequentially one at a time just before the next cycle
begins. Each probabilist is given information on the
state probability distribution at the beginning of the
cycle, the two chains, and the rules of the process.
Each probabilist, aided by the Markov property, is
asked to derive the probability distributions of all fi-
nite trajectories of the sample paths of the chain from
that moment on. Clearly, all probabilists, possessing
identical information, will derive identical results.

One may then define for the jth cycle

It is then possible to treat S1,S2,...., etc. as indepen-
dent, identically distributed (i.i.d.) random variables.

Since the cycle length is completely deterministic and
given by the constant (n + m), one may then let for
the jth cycle

Then Z1, Z2,...., etc. are also i.i.d. random variables.
Now, one may note that for any cycle, say the jth
one, which implies  E(Zj) = p for some p
in the interval [0, 1].  It is then the case that

and appealing to the Strong Law of Large Numbers
(SLLN) it is the case that

 

which is clearly the same as

and hence one has weak ergodicity in distribution
function. This argument can easily be implemented
for larger state spaces as well. Here one has a process,
then, that in the limit converges to regeneration ep-
ochs ((n + m) of them).

EXISTENCE THEOREM
The following theorem is crucial for it shows the ex-
istence of one such stationary cycle of probability dis-
tributions (vectors) and of the weak ergodicity in dis-
tribution limits.

Theorem: For the process considered here let
and . Then the stationary cycle

is given by

and

where

When  are both greater than zero, it is obvious
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. In all cases the entire cycle are probability dis-
tributions. This is guaranteed by the contruction. It
is also worth noticing that in the limit the time vary-
ing process becomes disoriented in the sense that it
does not matter which non time varying chain begins
the cycle. The theorem continues as follows: The Ce-
saro sum limit of this process is given by

where

.

From this theorem, the following results are also ob-
tained:

Corollary 1: If , then

.

Corollary 2: If , then  is a sta-
tionary or steady state solution of the time varying
process, where .

Corollary 3: As (n + m) gets large, it is the case that

.

The proof of the theorem and its corollaries may be
found in Roqué (1982). A stronger, far more general
version of corollary 2 may be found in Hajnal
(1956).

EXTENSIONS

In order to extend these results to larger state spaces,
some repeating sequence of factors in an infinite
product of matrices is a requirement. Even if all ma-
trices are regular, if they go on forever in the infinite
product with no discernible pattern and with differ-
ent steady state vectors, obviously the sequence of
transient responses will go on indefinitely and the
process will not cycle. The work in Howard (1971)
strongly supports this conjecture. A repeating se-

quence under the right conditions as evidenced in
the cases considered here insures cyclic behavior.

The case of 2 x 2 regular matrices is the only excep-
tion to the objections outlined in Hajnal (1958) to
the approach using characteristic roots. The objec-
tion is simply that the product of two regular matri-
ces may not be regular. Obviously, for larger state
spaces some kind of restriction may be necessary.
One that comes to mind right away is due to Hajnal
(1958) and may be called “The Hajnal Qualifica-
tion.” This qualification would require that one con-
sider only repeating sequences of factor matrices that
always begin with the same “scrambling” matrix. (See
Hajnal (1958) to insure regularity throughout the in-
finite product of matrices.) A scrambling matrix is
any regular stochastic matrix such that for any two of
its rows there always is at least one column with non-
zero entries for both rows. If the repeating pattern of
factors in the infinite product of matrices is set for al-
most all matrices except, say the first one, then it may
be possible to start the infinite product with an arbi-
trary starting scrambling matrix. The transient effect
due to this starting matrix should vanish in the long-
run and regularity would be ensured throughout the
entire product.

To show that scrambling matrices are not necessary
for ergodicity and hence weak ergodicity, simply al-
ternate any non-scrambling regular matrix with the
identity matrix.

It should be noted that the two state processes con-
sidered here meet the criterion for weak ergodicity
given by Hajnal (1956, 1958), but Hajnal’s criterion
does not imply Cesaro sums convergence (see Hajnal
(1956)). This convergence, on the other hand, is a re-
quirement for weak ergodicity in distribution func-
tion. So the requirements for weak ergodicity in dis-
tribution are in fact more restrictive. One of the
restrictions may very well be cyclic structure and be-
havior.

Another conjecture one may make is that the cycling
processes, that in the limit may be exhibiting a new
kind of stationarity, have autocovariance functions
that are strictly a function of within cycle position
and between cycle lags.
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It is worth mentioning that the processes described
here exhibit all kinds of peculiar new behavior. For
example, there may be stochastically induced com-
pletely deterministic oscillation between two states (0
and 1). If one begins to shrink the time interval, at
some point the oscillating entity will appear to be in
both states simultaneously. Would a particle oscillat-
ing in such a fashion thru time exhibit wave-like
characteristics? The same phenomenom shows there
is a way in and out of absorption into a state and in
fact this is what generates the oscillation. All of this
generated by alternating a pair of distinct regular
Markov chains without any absorbing state in them.
Their behavior, and the oscillation, become indepen-
dent of time and independent of initial conditions.

In more specific terms, this oscillation occurs when
one lets n = 1 and m = 1 in the cycle, and the product
of the two distinct alternating 2 x 2 regular matrices,
in whichever order multiplied, yields a regular 2 x 2
matrix with one absorbing state in it.

The oscillation or periodic phenomenom can easily
be extended to larger state spaces. It requires three
matrices products for the 3 x 3 case, four matrices
products for the 4 x 4 case, etc.  The columns of the
respective identity matrices alternate as the stationary
cycle of probability distributions. As such, this con-
stitutes a special class of time varying Markov chains.
To show this all that is needed is the work in
Howard (1971). An example of the 2 x 2 case (period
= 2) is:

An example of the 3 x 3 case (period = 3) is given by:

Although one can learn and infer from this oscillato-
ry finite Markov chains, nevertheless no matter how
small the transition interval selected, it is possible to
select a smaller observation interval and observe the
actual state. The Quantum problem is just the oppo-

site; no matter how small one makes the observation
interval, the transition interval can and will become
even smaller making it impossible to observe the ac-
tual state. Obviously continuous time analogs to
these models and perhaps even continuous state spac-
es are necessary.

For this oscillatory class of processes, if the periodici-
ty is v, then the 1 x v frequency vector has every
component equal to (1/v).  As v gets larger, this vec-
tor approaches an infinite size column vector whose
every component is equal to zero.

This large class of finite time varying Markov chains
also has the property that the processes can start with
the highest levels of entropy as initial conditions and
terminate at cyclic stationarity with absolute zero en-
tropy. One wonders if neural pathways, for example,
process information this way.

THE APPLICATION
The theory thus far described can now be put to
work in reviving and bringing up to date the work of
Gabriel and Newmann (1957, 1962). These authors
were very successful in studying weather cycles and
generating rain probabilities during the rainy (or wet)
season in Tel Aviv. Here the analysis will be conduct-
ed for the City of Miami which encompasses Little
Havana. The author is indebted to William R. E.
Locke of the National Weather Service and to Father
Pedro Cartaya, S. J., of the Belen Jesuit Prep. School
Observatory who were instrumental in obtaining the
data for this study.

The states of nature for the purpose of this analysis
are only two. State 0 represents a dry day, that is, a
day for which no rain (or only a trace amount) was
recorded and state 1 represents a wet day, that is, a
day for which at least .01 inches of rain was recorded.
The recording station was the weather station at Mi-
ami International Airport. Amounts of rain on any
given day less than .01 inches are considered a trace
amount and are labeled as such by the recording sta-
tion. Such days are considered dry days in this study.

The data consisted of 10 years of daily rainfall
records comprising the years 1984 thru 1993, a total
of 3653 days. The year was divided into a Dry season
comprising the 181 days from November 1 to April
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30 and a Wet season comprising the 184 days from

May 1 to October 31. The data consisted then of

1813 Dry season days and 1840 Wet season days.

There were 429 wet days and 1384 dry days in the

Dry season and there were 879 wet days and 961 dry

days in the Wet season. This data yielded the follow-

ing inmediate information: It rains an average of

42.9 days in the Dry season with an average downfall

per season of 15.01 inches. The average downfall per

day of precipitation in the Dry season was .35 inches

with a standard deviation of .69 inches. For the Wet

season, it rains an average of 87.9 days per season

with an average downfall of 41.31 inches per season.

The average downfall per day of precipitation in the

Wet season was .47 inches with a standard deviation

of .69 inches. The average total yearly precipitation

was then 56.32 inches of rain.

To construct the time varying Stochastic Process,

two Markov chain transition probability matrices

were estimated using relative frequencies (Maximum

Likelyhood Estimators). The data results for the Dry

season were the following:

This data yielded the first part of the Stochastic Pro-

cess cycle:

where α = .205,  n = 181, and  .

The steady state or long term probability of rain on

any given day of the Dry season was .235, that is, it

tends to rain on slightly less than one fourth of the

days. Similarly, the data results for the Wet season
were the following:

This data yielded the second part of the Stochastic
Process cycle:

where = .264 ,  m = 184, and .

The steady state or long term probability of rain on
any given day of the Wet season was .480, that is, it
tends to rain on approximately one half of the days.

The Markov chains can be used to generate probabil-
ities outright. For example, if on any given day of the
Dry season there is an estimate of a 50% chance of
rain, then the probability that it rains the following
day can be obtained from the following product:

It yields a subsequent probability of rain of .29 (and
.71 of a dry day).

One can use the Markov chains to analyze the weath-
er cycles within each season (see Cox & Miller
(1968)). Let the duration of a Dry season dry spell
(in days) be denoted by the random variable DSDS.
Then the probability of a dry spell during the Dry
season lasting j days is given by:

The mean of this geometric distribution is 1/(.187),
yielding an average duration of a Dry season dry spell
of 5.35 days. The variance is (.813)/(.187)2 , which
yields a standard deviation of 4.82 days. Similarly,
the duration of a Dry season wet spell in days as a
random variable denoted DSWS has the following
probability distribution:

Actual Day
Dry Season

Dry Wet Total
Dry 1125 259 1384

Preceeding Day
Wet 261 168 429

P 1( ) .813 .187

.608 .392
Π 1( ), .765

.235
= =

α″ 0≈

Actual Day
Wet Season

Dry Wet Total
Dry 622 339 961

Preceeding Day
Wet 337 542 879

P 2( ) .647 .353

.383 .617
Π 2( ), .520

.480
= =
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As in Gabriel & Newmann (1957), one can define a
Dry season weather cycle (DSWC) as a dry spell fol-
lowed by a wet spell. They showed the pertinent ran-
dom variables may be assumed statistically indepen-
dent. Then,

DSWC = DSDS + DSWS

The weather cycle random variable is the convolu-
tion of two distinct and independent geometric ran-
dom variables.

One can repeat this analysis for the Wet season by
defining the random variables Wet season dry spell
(WSDS), Wet season wet spell (WSWS), and Wet
season weather cycle (WSWC), in which case:

and

WSWC = WSDS + WSWS.

Tables 1 and 2 summarize basic information con-
cerning all the weather cycle random variables. They
give the mean and standard deviation of all pertinent
random variables.

Finally, one can obtain the results for the time vary-
ing Stochastic Process. The stationary or long term
probability of rain for the jth day of the Dry season is
given by:

The stationary or long term probability of rain for
the kth day of the Wet season is given by:

Both probabilities settle down very quickly to the re-
spective steady state values for each season but one
can identify the boundary interaction between the al-
ternating seasons as a stationary residual transient re-
sponse that somewhat smooths out the change of sea-
sons. During the first few days of the Dry season, the
probabilities of rain are slightly higher than the nor-
mal tendency for the season and during the first few
days of the Wet season the probabilities of rain are
slightly lower than the normal tendency for the sea-
son.

Tables 3 and 4 summarize the stationary probabili-
ties for the respective seasons.

Since it tends to rain slightly less than one fourth of
the days during the Dry season and approximately
one half of the days during the Wet season and since

Table 1. Average duration (in days) of 
weather cycles

Season
Type

Dry Spell
Days

Wet Spell 
Days

Weather Cycle 
Days

Dry 5.35 1.64 6.99
Wet 2.83 2.61 5.44

Table 2. Standard Deviation (in days) of 
weather cycle random variables

Season
Type

Dry Spell
Days

Wet Spell
Days

Weather Cycle
Days

Dry 4.82 1.03 4.92
Wet 2.27 2.05 3.06

P DSDWS j=( ) .392( ) j 1– .608( ) j, 1 2 …, ,= =

P WSDS j=( ) .647( ) j 1– .353( ) j, 1 2 …, ,= =

P WSWS j=( ) .617( ) j 1– .383( ) j, 1 2 …, ,= =

Table 3. Stationary probabilities of rain for 
days of the Dry season

Date Day No. Probability
November 1 1 .285
November 2 2 .245
November 3 3 .237
November 4 4 .235
November 5 5 .235

April 29 180 .235
April 30 181 .235

Table 4. Stationary probabilities of rain for 
days of the Wet season

Date Day No. Probability
May 1 1 .415
May 2 2 .463
May 3 3 .475
May 4 4 .479
May 5 5 .480

October 30 183 .480
October 31 184 .480

Π1 j( )( ) .235 .205( )j .245( )
j

+
1 2 … 181, , ,

=
=

Π1 k( )( ) .480 .264( )k .245( )
k

+
1 2 … 184, , ,
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both seasons last approximately the same, it stands to
reason that it should rain slightly over one third of
the days throughout the years. This can be confirmed
by calculating :

CONCLUSION

The methodology of Gabriel and Newmann yields a
wealth of information on year round climatic condi-
tions. This information should prove of value to
planners in both the agricultural and tourism sectors

of the local economy. It should prove useful to the

researchers of the Mobile Irrigation Laboratory and

to the agronomists of the Homestead Agricultural

Center. Even though the data reflects values calculat-

ed for the City of Miami, results should not be too

dissimilar for regions throughout Miami Dade

County. At the very worst, the methodology may be

re-implemented on other regions.

The methodology implemented here is applicable in

any country of the world that is subject to a subtrop-

ical climate with well defined Dry and Wet seasons.

Cuba and Puerto Rico, for example, are two such na-

tions.
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