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COMMENTS ON

“Rainfall in Little Havana” by Roqué

Jorge Luis Romeu

It is with much professional satisfaction that we dis-
cuss Dr. Diego Roqué’s Markov model, implement-
ed in his paper “Rainfall in Little Havana.” For, as we
have stated in previous ASCE papers (Romeu, 1996)
there is much need for review, update and imple-
mentation of quantitative modeling methods in our
analyses of the Cuban situation.

Roqué’s paper is a clear, clean and useful example of
the use of Markov Chains in forecasting. It can be
easily implemented with Cuban data, in the same
manner Roqué has done in the Little Havana exam-
ple. This work could even be broken down by prov-
inces, or by geographical regions, and used in agricul-
ture, construction and other outdoor activities that
are substantially affected by rain, with obvious bene-
fits for the Cuban economy. 

However, Markov modeling can go much further. In
addition to forecasting, such models can be used in
the study and control of many time dependent pro-
cesses, including socioeconomic and political pro-
cesses. And it is in this direction that we would like
to discuss and expand Roqué’s paper, in lieu of com-
menting on his neat math derivation.

Implementation of Markov Chains require the defi-
nition of: (i) two or more states; (ii) a transition
mechanism defined by a (TPM) matrix of probabili-
ties of change from one state to another; and (iii) a
time domain with fixed increments (e.g., the system
is observed by hours, days, weeks, months, etc.). In
such case we obtain a “memoryless” process, where
the future is dependent on the past only by way of

the present. This model allows the description of a
process as a “black box” and provides, among other
important performance measures: (i) the probability
of being in a given state, at a given time in the future;
(ii) the mean time to reach a given state; (iii) the
probabilities (or mean times) of sojourning in each of
the steady states; and (iv) the time to reach the sys-
tem steady state. All of this Dr. Roqué has illustrated
with states “rain” and “dry” in his “Rainfall in Little
Havana” paper.

However, we could attempt to implement Markov
models in socioeconomic contexts closer to the activ-
ities of ASCE. For example, we could define two
states: one “unstable” (say dictatorial or revolution-
ary) and another “stable” (say democratic) for a
country (say the Cuban republic during the XX Cen-
tury). If we could also estimate the transition proba-
bilities from one state to another, then we could, as
Roqué did, use a Markov Chain approach. Then, we
could forecast say, the probability of being in a given
state on a given year (e.g., arriving at a democratic
state in 2000) when starting in another given state
(say, under a dictatorial regime) at some previous
time (e.g., in Cuba, in 1990).

The main problem with modeling socioeconomic
problems is, precisely, obtaining the data to estimate
the transition (TPM) matrix. As seen from Roqué’s
work, there are several years of daily rain data that al-
low the estimation of his TPM matrix. However, we
usually do not find enough state transitions, in our
mentioned socioeconomic context, to do likewise.
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One alternative would be to pool data from similar
countries. For example, we could assume that certain
Latin American countries that share the same history
and socioeconomic conditions, could be modeled in
a single process by pooling their data. Unfortunately,
if we pool too many countries together, however,
their dissimilarities will introduce variability into the
process, and the (TPM) transition estimations will
suffer. Finally, we can refine this model by consider-
ing the time T, to the next transition, as a (second
random exponential) variable, as opposed to the fixed
daily, monthly, etc., time increments. This refined
model is now an Embedded Markov Chain.

SOME USEFUL MODEL EXTENSIONS

Following the nomenclature and approach in Kalb-
fleisch and Prentice (1980), let us now consider T,
the continuous and positive random variable “time
to failure or transition.” We will denote its associated
Survivor Function P{T>t} as F(t); its density func-
tion as f(t) and its instantaneous failure or transition
rate, at time T=t (also called Hazard Function) as
λ(t). We can see that: λ(t) = f(t)/F(t). 

The Hazard Function λ(t), which depends on the
time T=t, can also be characterized as minus the de-
rivative of the natural logarithm of the Survivor
Function. This characterization makes the Hazard
Function the centerpiece in the definition of both,
the Survivor and the density functions of T. There-
fore, we can now transfer our modeling efforts of
variable “time to failure” T, into modeling its Hazard
Function λ(t).

First, notice that λ(t) can be an increasing, decreasing
or mixture (bathtub curve) function. In industrial re-
liability studies, for example, an increasing hazard oc-
curs when failures tend to become more frequent as
the (device or) process ages. Decreasing Hazard
Functions occur when process failures become less
frequent over time. Finally, the bathtub Hazard
Function characterizes the entire process life cycle. It
occurs because failures tend initially to be more fre-
quent (infant mortality) then stabilize at a low level
(useful life) and finally rapidly increase again (during
the aging period).

Let us adapt this to a socioeconomic context, like the
one in our Cuban example. An increasing Hazard
Function can be justified in a new, revolutionary re-
gime, whose emerging authority is initially chal-
lenged by many and can lose power. On the other
hand, a decreasing hazard may be justified in a per-
sonal regime, legitimized by time and a well defined
succession structure (e.g., monarchy), where authori-
ty is stable and widely accepted with passing time. 

Finally, the well known and mathematically conve-
nient constant hazard rate is obtained, in industrial
applications, by curtailing the process life cycle—
and hence modifying the bathtub curve. First, screen
testing (weeding out infant mortality items) and then
the implementation of an efficient replacement poli-
cy (items are taken out of service before they reach
their aging process) leaves only the “useful life” peri-
od.

In the socioeconomic context, such bathtub hazard
helps explain the entire political life cycle of a suc-
cessfully consolidated dictatorship. At the onset, such
regime faces strong opposition, which can bring it
down, inducing a large hazard. With time, it en-
trenches itself (through force) crushing most of the
opposition and stabilizes in power (lower, constant
hazard). Finally, the hazard increases again as the dic-
tator ages, the regime demoralizes, its traditional
leaders either die or become incapacitated by old age,
and a younger, better prepared generation of techno-
crats challenges the old guard to make changes.

Such life cycle system behavior can be currently ob-
served in Mexico and in China. It was also character-
istic of the military dictatorships of Salazar in Portu-
gal, Porfirio Díaz in Mexico, and Stroessner in
Paraguay. And it is also likely also occur in Cuba,
with Castro. 

Finally, political stability (constant hazard) in socio-
economic contexts results from preventing abrupt
government changes, such as revolutions and mili-
tary coups, as well as prolonged personal govern-
ments. It plays the same role as screening for infant
mortality and good replacement policies for aging
problems in the industrial setting.
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In either of these two contexts (socioeconomic or in-
dustrial) constant hazard rate is what allows the ap-
plication of Markov Models (which require constant
transition rates to guarantee the “memoryless” prop-
erty). A functional example of such processes is the
Exponential model, which exhibits the classical con-
stant Hazard Function (or failure rate).

Finally, the Two Parameter Weibull (λ, p) Model,
constitutes a generalization of the Exponential. The
Weibull Hazard Function is:

λ(t) = λp(λt)(p-1) 

If p = 1, the hazard λ(t) is constant and the model re-
duces to the Exponential. However, if p > 1 the Haz-
ard Function is increasing and if p < 1 it is decreasing
in t.

REGRESSION MODELS

Let us now “open the Black Box” in the following
way. Let z= (z1, ... zp) be a vector of p “covariates” or

process explanatory variables, and let the Hazard
Function λ(z) be:

λ(t; z) = λ (t) c(zb)

where b is also a vector, of p coefficients (i.e.,
weights) and the function c(zb) either linear, inverse
linear or exponential (i.e., c(zb) = 1+ zb or (1+ zb)-1

or exp(zb)).

Now we have a Hazard Function λ(t; z) that depends
not only on the time t to failure (through λ(t)) but
also on a set of device or process characteristics, de-
fined by the vector of (explanatory) covariates z,
weighted by the coefficients b. In the socioeconomic
context, this would mean that T (i.e. time to transi-
tion) is now associated with a set of problem covari-
ates that describe particular characteristics of the dif-
ferent countries included in the analysis, such as
population, GDP, unemployment, etc.

The crux of the problem now becomes modeling this
new relationship, akin to the problem of determining
the parameters of a regression model. We usually se-
lect, for modeling convenience, the functional form:

λ(t; z) = λ(t) exp{zb}

As a result, the conditional density function f(t) of T
(time to transition) is now:

f(t; z) = λ exp{zb} exp[ -λt exp{zb} ]

Using the transformation Y = Log (T), we can even-
tually arrive to the following model, that expresses
the log failure rate as a linear function of covariates z:

Y = - Log (λ) - zb + W

where W is a random variable (specifically, having
extreme value distribution). 

Skipping the mathematical details (that the reader
can find in the reference given above) this result pro-
vides a regression model on covariates z, with coeffi-
cients b, which leads to the development of the Pro-
portional Hazards Model (Cox, 1972).

PROPORTIONAL HAZARDS MODEL IN 
CUBAN SOCIOECONOMIC STUDIES

This model has been successfully and widely used in
cancer studies, where it has served two very impor-
tant goals. First, it has allowed the inclusion, in the
model, of many different patients, with many differ-
ent medical and physical conditions, thus increasing
the pool of available data and leading to better esti-
mates of the transition rates and the times to remis-
sion, to death, etc. Second, it has allowed the estab-
lishment of “risk factors,” parameters that affect
(increase or decrease} the Hazard Function and con-
sequently also the time to failure in the process
(sometimes positively, other times negatively). These
risk factor estimations provide (i) a relative weight for
each factor analyzed and (ii) their statistical signifi-
cance (or lack of significance). The latter, has proven
useful in determining what are the prime (and the
secondary) factors affecting the cancer process, pro-
viding a better understanding of it and ultimately
some degree of control over its course.

In the Cuban socioeconomic context, we propose us-
ing this approach to study and understand the factors
and subprocesses associated with the current Cuban
situation. We can apply this modeling approach with
certain economic and social factors known to effect
the political stability. Then, we can analyze and
quantify their contribution, sign and statistical signif-
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icance, as described above, and use them to help re-
dress the state of the nation.

To find enough data to implement this approach we
first need to define a subset of appropriate Latin
American countries. Then, a set of covariates such as
GDP, inflation rate, unemployment, current ac-
count, etc. would be defined. Then, we also need to
define the set of states (e.g., democracy, dictatorship)
we are interested in studying, with the transition
modes to go from one to the other (e.g., revolution,
coup, foreign intervention, election). We then col-
lect, from the countries selected, for the historical pe-
riod included in the analysis, the time to state change
(say in years or months) and the corresponding val-
ues of the covariates. Finally, we use the Proportional
Hazards model with the above defined times and co-
variates and obtain estimates of their values, signs
and statistical significance.

There is yet another statistical alternative to the
above mentioned approach. It is also of the regres-
sion class, though not related to reliability modeling.
It consists in implementing a Discriminant Analysis.

It may be possible to divide the Latin American
countries into three groups. One group will be com-
prised of those countries considered unambiguously
as “positive.” A second group is comprised of those
considered unambiguously as “negative.” Finally,
there is a third group composed of those countries
for which we do not have a clear cut position or eval-
uation. We can again measure specific factors or vari-
ables (say, size, GDP, inflation, unemployment, etc.)
and implement a Discriminant Analysis using them.
Such approach would also yield the degree of influ-
ence, sign and statistical significance of the factors
sought. But this is material for a future, separate pa-
per for ASCE.

To conclude, we believe that Dr. Roqué, with his
well developed example of the use of Markov Chains
to study environmental problems, has provided an
opportunity for ASCE researchers to review the
wealth and potential of the Markov, Reliability and
Proportional Hazards models, in the study of Cuban
socioeconomic problems.
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